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➜ The existence of dark matter is inferred from:
■ Rotation curves of galaxies (but evidence is debatable as 

distance galaxies are dim background light from Milky Way 
needs to be subtracted)

■ Micro-lensing
➜ Dark energy is believed to explain the acceleration of the Universe
➜ So far there is no direct experimental evidence of neither dark matter or 

dark energy
➜ Experimental laboratory searches are important

Our understanding of the Universe is 
limited to only the luminous matter 



➜ Many possibilities spanning an 
enormous range of energies/masses

➜ Some theories are more developed 
than others

➜ Searches with particle accelerations 
have mostly concentrated on the 
higher mass regions (WIMPs) but no 
positive detection has been made

➜ Astrophysical observations provide 
some indirect bounds 

Many possibilities for dark matter 
candidates

Conrad & Reimer, Nature Phys. 2017
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Axions are required to fix the 
Standard Model

• Axions are pseudo-scalar particles postulated to exist to explain the 
absence of CP violation by the strong interaction 

• Experimental limit on neutron electric dipole moment implies

• Promote         to dynamical variable which can relax to zero (Peccei & 
Quinn 1977)

• Axion is Nambu-Goldstone boson of the high energy breaking of U(1)PQ 
symmetry

• String theory compactification leads to (pseudo)scalar particles that do 
not necessarily couple to the QCD fields. These are axion-like particles 
(ALPs) are less prescribed by theory 



Light axions are predicted by lattice 
QCD calculations

Borsanyi et al., Nature (2016)

• Axions can naturally be the dark matter (for                                 )

• Lattice calculations pin down ma (fa) for QCD axions to be the major 
constituent of dark matter 

• Assuming dark matter is made of axions, the axion field is:
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Ultra-light axions could explain the 
large-scale structure of the Universe

➜ Structure formation simulations with and without axion-like dark matter 
show difference in the visible matter distribution around spheroidal dwarf 
galaxies

➜ Simulations with axion-like dark matter agree with observational data if 
the axion mass is ∼10-22 eV (i.e., with a Compton wavelength of the same 
order as the size of the galaxy)

➜ Similar masses are also inferred from the solution to Friedmann’s equation 
in presence of a pseudo-scalar field (Gregori et al. ApJ 2019) 

density profiles in 
dSph galaxies 

CDM

Schive et al. Nature Phys. 2014
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QCD axions and ALPs

• QCD axions and pions share the same quantum numbers. Mixing with 
the pion gives it a small mass

• Hence, axions couple to QED via a loop-induced two-photons diagram

• In presence of an external field, this is an effective mass mixing 
between axions and photons



• Astrophysical bounds are based on stellar evolutionary models

• Helioscopes (e.g., CAST) constraints rely on solar models

• Haloscopes (e.g., ADMX) assumes axions/ALPs constitutes a large 
fraction of dark matter

• Laser bounds (e.g., PVLAS) are far from QCD predictions

CAST (2017)

Experimental and astrophysical 
constraints on axion/ALPs

QCD axion



Experimental and astrophysical 
constraints on axion/ALPs

➜ Axions with energies ∼10 keV can be produced in stars (Primakoff effect)
➜ Axions provides an extra energy loss mechanism: this leads to faster cooling
➜ Plasma screening effects must be included and this complicates the 

estimates of the axion flux
➜ The lifetime of horizontal branch stars sets:

Axion density
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Helium plasma at 10 keV

Raffelt and Weiss, 1995



CAST telescope at CERN provides 
state-of-art axion constraints

➜ CERN Axion Solar Telescope (CAST) looks at the solar axions by converting 
them into X-ray photons with a magnetic field

➜ Provides one of the best bounds at higher axion masses
➜ Assumptions needed to estimate axion production in the Sun 
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Detection techniques use regeneration of 
axions into photons 

• The probability of regeneration is maximized when L∼4ω
(ma)

-2, which sets the length of the magnet with the axion 
mass
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Optical photons have energies that 
naturally match those of the axions
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Optical and Free Electron Lasers can be 
used for axion searches

➜ ELI laser will achieve intensities >1023 W/cm2, much higher than any 
current laser system

➜ XFEL.EU has achieved highest brightness in X-rays than any other 
sources

➜ A combination of these facilities may be envisioned for fundamental 
physics research

ELI XFEL.EU
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Light-through-wall experiments have 
provided model-free bounds

Robilliard et al., PRL (2007)

• No need to rely on model-dependent axion production 
mechanisms

• Light-through-wall experiments suffer from low sensitivity 
- due to conversions from axions to photons and back

• Used to look for ALPs with large coupling (                    )
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PVLAS can achieve higher sensitivity but 
limited by QED effects

• PVLAS (Polarizzazione del Vuoto con LASer) aims at 
measuring the birefringence and dichroism induced by 
the axion contribution to the effective photon mass

• Birefringence goes as (gaγγ)
2 instead of (gaγγ)

4

• However, the same effect can occur via the QED box 
diagram (from the Heisenberg-Euler Lagrangian)
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An alternative proposal: resonant 
scattering with on-shell axions

• Real axions are produced by two-photon scattering
• To detect a real axion, we must reconvert it at a 
macroscopic distance from production region

• No QED background, but effect goes as (gaγγ)
4

• However, lower efficiency can be compensated by using 
laser substructures (patterns) within beam, enhancing 
scattering - analogous to Bragg scattering
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How can improve the mass range and 
sensitivity of the bounds?

•Light-through-wall experiments suffer from double 
conversion (low sensitivity)

•The same problem occurs with on-shell photon scattering
•We have been working on an alternative proposal 
whereby axions are excited from the Unruh vacuum seen 
by an electron accelerated by a laser beam

•These axions can then convert into photons in an external 
magnetic field

•The advantage over light-through-wall experiments is that 
axion (re)generation happens only once
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Motion of electrons in a laser field

 

 

 

Crowley et al., Sci. Rep. (2012)

Gregori et al., Class. Quantum Grav. (2016)
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Axion generation in the 
accelerated frame

• We use the quantum Vlasov equation to calculate the rate of 
massive pseudo-scalar, spinless particle production as seen by an 
accelerated electron

• Because the electron is accelerated, it sees itself surrounded by a 
bath of pseudo-scalar particles

• We also assume the following Lagrangian:

 

 

 

Wadud et al., PLB (2018)
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Number of axions produced by 
the time-varying metric is large

• In the accelerated vacuum, the observer (electron) sees itself 
surrounded by a thermal bath of particles 

•Axions (if they exist) are produced by the same process that 
produces the Unruh/Hawking radiation

•By solving the quantum Vlasov equation, the number density 
of axions is obtained (                )

Wadud et al., PLB (2018)
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Axion search with high power lasers 
can probe the low-mass range

 

 

 

 

• Low-Z gas-jet (e.g., H, He) with density 1021 
cm-3

• ELI: 1 kJ, 100 fs, high-repetition rate

• Unruh temperature in the 0.5 eV range (optical 
emission near 2 μm)

• Difficulty lies on separating axion-photon 
emission with other classical emission 
processes near the laser wavelength 
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Axion search with XFELs allow for 
separation between drive and signal

 

 

 

• Low-Z gas-jet (e.g., H, He) with density 1021 cm-3

• FEL: 1 mJ, 100 fs focussed on <1 μm spot size, 
high-repetition rate

• Expect emission wavelength near 25 μm 

• Lower constraints on axion coupling, but easy to 
separate axion signal (in the infra-red) from the 
x-ray drive  

XFEL



XFEL

ELI

Proposed axion searches using ELI or 
XFEL can complement current ones 



Thank you for your 
attention!


